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Abstract: Missing observational data pose an unavoidable problem in the hydrological field. Deep
learning technology has recently been developing rapidly, and has started to be applied in the
hydrological field. Being one of the network architectures used in deep learning, Long Short-
Term Memory (LSTM) has been applied largely in related research, such as flood forecasting and
discharge prediction, and the performance of an LSTM model has been compared with other deep
learning models. Although the tuning of hyperparameters, which influences the performance of
an LSTM model, is necessary, no sufficient knowledge has been obtained. In this study, we tuned
the hyperparameters of an LSTM model to investigate the influence on the model performance, and
tried to obtain a more suitable hyperparameter combination for the imputation of missing discharge
data of the Daihachiga River. A traditional method, linear regression with an accuracy of 0.903 in
Nash–Sutcliffe Efficiency (NSE), was chosen as the comparison target of the accuracy. The results of
most of the trainings that used the discharge data of both neighboring and estimation points had
better accuracy than the regression. Imputation of 7 days of the missing period had a minimum value
of 0.904 in NSE, and 1 day of the missing period had a lower quartile of 0.922 in NSE. Dropout value
indicated a negative correlation with the accuracy. Setting dropout as 0 had the best accuracy, 0.917 in
the lower quartile of NSE. When the missing period was 1 day and the number of hidden layers
were more than 100, all the compared results had an accuracy of 0.907–0.959 in NSE. Consequently,
the case, which used discharge data with backtracked time considering the missing period of 1 day
and 7 days and discharge data of adjacent points as input data, indicated better accuracy than other
input data combinations. Moreover, the following information is obtained for this LSTM model:
100 hidden layers are better, and dropout and recurrent dropout levels equaling 0 are also better. The
obtained optimal combination of hyperparameters exceeded the accuracy of the traditional method
of regression analysis.

Keywords: Long Short-Term Memory; missing discharge data imputation; hyperparameter tuning;
performance evaluation

1. Introduction

Missing observational data pose an unavoidable problem in the hydrological field.
It can be caused by various factors, such as malfunction of the observation device, errors
in manual data input, limitations of the measuring equipment, etc. The missing data will
reduce the efficiency of relevant hydrological research, and lead to further problems in
decision-making in hydrological management [1]. Up to the present, the missing data
have been complemented successfully by traditional methods, such as the tank and runoff
models [2,3], and regression analysis using data from neighboring observation points.
However, these traditional methods have limitations in the cost of time and manpower and
peak time shift.
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Deep learning technology has recently been developing rapidly, and has started to
be applied in the hydrological field. Being one of the network architectures used in deep
learning, Long Short-Term Memory (LSTM) was applied largely in related research, such
as flood forecasting [4–8] and discharge prediction [9–12], and the performance of the
LSTM model was compared with other deep learning models on the application of runoff
estimations. Hu et al. [8] applied an Artificial Neural Network (ANN) and LSTM on
the simulation of a rainfall-runoff process. Xiang et al. [9] conducted an application of
LSTM on an estimation of hourly rainfall-runoff, and compared the performance with
traditional models. Lee et al. [12] performed runoff simulations of a river by LSTM and a
physics-based model. Bai et al. [13] compared the robustness of two hydrologic models
with an LSTM model in a prediction of runoff. Fan et al. [14] compared the performance
of an LSTM model with ANN and the Soil and Water Assessment Tool (SWAT) on runoff
modelling of a river basin. All the studies mentioned above pointed out that the LSTM
model had better performance or was more stable than the compared models in the
application of runoff estimations. Additionally, the potential of LSTM in the forecasting
of evapotranspiration was also explored, and the fact was known that the performance of
the model can be affected by different factors. Granata and Di Nunno [15] deployed LSTM
and a nonlinear autoregressive network with exogenous inputs (NARX) for the prediction
of evapotranspiration. The results indicated that each model has its own advantages
in different climatic conditions, since the model performance can be affected by local
climatic conditions significantly. Chen et al. [16] compared the performance of LSTM
with several other models in an estimation of daily reference evapotranspiration. The
model performance was influenced by the type of available features. Ferreira and da
Cunha [17] investigated the potential of deep learning models, machine learning models,
and a combined model in the forecasting of daily reference evapotranspiration in local
and regional scenarios. Even if the model performance varied with different input data
combinations, the combined model, which consisted of LSTM and a convolutional neural
network (CNN), had the best accuracy in both local and regional scenarios.

However, the tuning of hyperparameters influences the performance of an LSTM
model. Exploring optimal hyperparameters for an LSTM model is already a study ob-
jective in applications of LSTM models in fields other than hydrology, such as sequence
labeling [18], network attack detection [19], stock market prediction [20], highway traffic
prediction [21], etc. In the case of hydrology, the tuning of hyperparameters is a necessary
step before the application of the model in other research [4,5,22–25]; however, no sufficient
knowledge has been obtained.

In our previous study [26], we investigated the feasibility of missing discharge data
imputation of the Daihachiga River by an LSTM model. The LSTM model was proved to
be feasible, and had better performance than linear regression analysis, even though the
hyperparameter was not tuned. In this study, we tuned the hyperparameters of an LSTM
model to investigate the influence on the model performance, and tried to obtain a more
suitable hyperparameter combination in the imputation of missing data using an LSTM
model. A suitable hyperparameter combination of LSTM will improve the performance
of the model on missing discharge data imputation, and it will have reference value in
hydrological research.

2. Materials and Methods
2.1. Study Area

The study area of the present work is the Daihachiga River Basin (Figure 1). The
Daihachiga River belongs to the Jinzu River system. It starts from Hikagedaira Mountain,
which is located in the east of Takayama City, Gifu Prefecture, Japan. The river flows from
the east to the west, and merges into the Miya River in the urban area of Takayama. The
river basin has about 1800 mm of mean annual precipitation, 10.9 ◦C of mean annual air
temperature, and 60.4 km2 of catchment area [27,28].
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2.2. Data

Discharge data of the Daihachiga River were used in this study. The data were ob-
served at one-hour intervals by the Gifu Prefecture at the observation points of Shioyabashi
(36◦8′8′′ N, 137◦18′50′′ E, 617 m) and Sanpukuji (36◦9′12′′ N, 137◦15′38′′ E, 563 m) (Figure 1).
The data of 2008 and 2009 were used as training and validation data, respectively. In addi-
tion, precipitation and air temperature data at one-hour intervals observed by the Japan
Meteorological Agency in 2008 and 2009, Takayama (36◦09′18′′ N, 137◦15′11′′ E, 561 m),
were used during the training of the discharge data.

2.3. Method
2.3.1. LSTM Model

The structure of the LSTM model used in this study is shown in Figure 2. At the time
step t in LSTM, cell state Ct and hidden state ht, which is the output from the LSTM unit,
are passed to the LSTM of the next time step t + 1. In an LSTM unit, ht can be obtained
from ht−1, Ct−1 and xt, which is the input value at time step t. In an output unit, output yt
from the output layer can be obtained from the output of LSTM, ht. The procedure is the
same as the standard RNN model. In the case of LSTM, xt, ht−1 and Ct−1 will be passed
through the input gate, output gate, and forget gate in the LSTM unit, and the vanishing
gradient problem can be solved [29,30]. The units of the input layer and output layer of the
LSTM used in this study are 24 and 5, respectively (Figure 2). The other hyperparameters
set for training are shown below:

• In: number and type of input variables.
• Backts: backtracked time steps of data used for the training.
• Hid: number of units of hidden layer.
• Drp: dropout.
• Drpr: recurrent dropout.

The purpose of this study is to impute the missing values. Therefore, it is possible
to use past or future data of the observation point for which the missing value must be
estimated as input values. Because LSTM is a structure that propagates information from
the past to the future, future information is not as effective as present information as input
data. Therefore, in this study, the past data Backts steps before will be used as training data.
When the data to be estimated are used as input data for training, considering the existence
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of missing data, the data from t-Backts to t-Backts-24 are used to estimate the data at time
t. This means that if there is a Backts steps gap of missing data, this part can be estimated
by the data before the gap. Thus, the hyperparameter Backts only has a value when the
estimated data were also used as input data. For other input data than the estimated point,
such as temperature and precipitation, data from time t to t-24 are used to estimate time t.
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The LSTM was actualized by Python 3.7.4 with the Keras 2.3.1 and NumPy 1.18.1
libraries. The activation function was an exponential linear unit (ELU), and the optimizer
was Adam.

2.3.2. Hyperparameter Settings and Data Training

LSTM training was carried out by 90 kinds of hyperparameter combination (Table S1)
settings to figure out the best one. The discharge data of the Daihachiga River, and the
air temperature and precipitation data of Takayama were used as input variables. Several
specified values were assigned for each hyperparameter in the training (Table 1). Backts = 24
and 168 assume the missing period of 1 day and 7 days, respectively. In each training period,
values of dropout and recurrent dropout were assigned identically. The hyperparameter
values were assigned by trial-and-error approach in those 90 trainings. The estimated data
were the discharge of Shioyabashi. Table 2 shows the input variable types for each case.
For example, in the setting of Backts = 24, Case 1 takes as input data two variables: the
discharge data from t-Backts to t-Backts-24 at the Shioyabashi, and the precipitation at t to
t-24. Case 2 takes as input data two variables: the discharge data from t-Backts to t-Backts-24
at the Shioyabashi, and the discharge data from t to t-24 at Sanpukuji. Case 5 takes one
variable as input data: the discharge data from t-Backts to t-Backts-24 at the Shioyabashi.
Additionally, Case 9 takes as input data one variable: the discharge data from t to t-24 at
the Sanpukuji.

Table 1. Assigned values of hyperparameters.

Hyperparameter Value1 Value2 Value3 Value4

Backts 24 168 0
Hid 20 50 100 200
Drp 0 0.01 0.05 0.1
Drpr 0 0.01 0.05 0.1
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Table 2. Cases of input variables.

Type of Input Variables Number of Input Variables

Case1 Qshio + P 2
Case2 Qshio + Qsan 2
Case3 Qshio + Qsan + P 3
Case4 Qshio + Qsan + P + T 4
Case5 Qshio 1
Case6 Qshio + T 2
Case7 P 1
Case8 T 1
Case9 Qsan 1
Case10 Qsan + P 2
Case11 Qsan + T 2

P: precipitation. Qsan: discharge volume of Sanpukuji. Qshio: discharge volume of Shioyabashi. T: air temperature.

The evaluation method of Kojima et al. [26] was referenced and improved advisably
in this study. Because the result of each training of Stochastic Gradient Decent (SGD) is
different, which means the accuracy of each training is different, the ensemble average of
multiple training results was calculated to cancel such differences. For each combination of
hyperparameters, the training was repeated 500 times. From the results of 500 trainings,
N ensemble members of them were picked out randomly, and the ensemble average was
calculated. The Nash–Sutcliffe model efficiency coefficients (NSE) [31] of these average
values were calculated for the evaluation. NSE is a coefficient to evaluate the estimation
results of a hydrological model. Additionally, the evaluation metrics commonly used
on deep learning, such as Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE), were regarded as the potential options to evaluate the model accuracy of this study.
The N varies from 1 to 50, and for each N, the random pick out was carried out 40 times.
The average and standard deviation of NSE of these 40 ensemble average values were
calculated, and the variation of 5th percentile (P5) on N = 1–50 was evaluated. Even if the
result was dispersed, P5 can indicate that 95% of the results were better than it.

2.3.3. Traditional Method

The linear regression equation was used as the traditional imputation method com-
pared with the new method using deep learning, which was proposed in this study. When
yt is the discharge data observed on Shioyabashi at time t, and xt is the discharge data ob-
served on Sanpukuji at time t, the linear regression model is defined as follows Equation (1):

yt = axt + b (1)

where a and b are the regression parameters. a and b were estimated with the data of 2008,
as shown in Figure 3. The x axis is the discharge data at Sanpukuji (xt), and the y axis is the
discharge data at Shioyabashi (yt), where the correlation coefficient R was 0.915. The dotted
line is the linear regression model. The accuracy, which was evaluated with the discharge
data in 2009, was 0.903 in NSE.

A tank model optimized by the Shuffled Complex Evolution (SCE-UA) method was
also considered as the comparison target of the deep learning. In this model, the precipita-
tion of Takayama in 2009 was used as input, and the discharge height was estimated. The
equation of the model is shown as follows Equation (2):

ΣQ = ΣR− ΣE (2)

where Q is the discharge height (mm/h), R is the precipitation, and E is the evaporation. The
discharge coefficient was set as 0.9. The evaporation was set as 0, since it was complicated
and hard to grasp the exact amount of evaporation in this case. However, the R of the
tank model was 0.888 (Figure 4), and the NSE was 0.771, which is lower than the linear
regression model. The aim of this study is to propose a new method to obtain an improved
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accuracy. Thus, the higher accuracy of the linear regression model was chosen as the goal
to be exceeded by the new method.
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3. Results and Discussion
3.1. Evaluation Metrics

NSE, RMSE, and MAE were tested on several random trainings. The results indicated
a basically stable relationship between these metrics (Figure 5). The NSE has a negative
correlation with RMSE. The trend of MAE was expected to be the same as RMSE. However,
it is different between Training No. 2 and Training No. 3. Even if Training No. 2 has a
higher RMSE and lower NSE than Training No. 3, its MAE was lower. The hydrographs of
Training No. 2 and Training No. 3 are shown in Figures 6 and 7, respectively. The blue line
is observed data, and the orange line is estimated data. The line of estimated data overlaps
the line of observed data more in Training No. 2, which has led to a result of a lower MAE
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value than Training No. 3. On the other hand, Training No. 3 was able to estimate peak
discharge more accurately than Training No. 2, which made the RMSE of No. 3 lower than
Training No. 2. However, these results were compared under a condition that NSE is under
0.4, which cannot be regarded as acceptable model accuracy. Since NSE can reflect the
trend of RMSE and MAE, and was frequently used in recent studies, it was chosen as the
evaluation metric of this study.
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3.2. Number of Members for Ensemble Average

The P5 of the NSE from the number of ensemble members N = 1 to 50 for Case 2 is
shown in Figure 8 as an example. The blue line shows the results with Backts = 24, Hid = 20,
the orange line shows the results with Backts = 24, Hid = 200, and the red line shows the
results with Backts = 168, Hid = 100. At the blue line, where the number of hidden layers
(Hid) is small, the accuracy is generally low, and the P5 of NSE = 0.90 is the best. For the
orange and red lines, where Hid > 100, increasing the number of ensemble members results
in an accuracy of NSE > 0.92, which is greater than the 0.903 reference accuracy. In brief, the
variation curves of P5 of NSE become flat, and keep the accuracy level when N ≤ 20. Thus,
in this study, the training results were evaluated by the P5 of NSE for N = 30 for safety to
avoid the dispersion of different training results.
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3.3. Type of Input Variables

The P5 of NSE, when N = 30, was compared to evaluate the influence of each training
hyperparameter to the result. There are four kinds of Hid combinations for each input
variable case. Figures 9–11 show the four combinations of the hyperparameter settings
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summaries of the results with Drp = 0 and Drpr = 0. Figures 9 and 10 show the results of
Case 1–6 with Backts = 24, which assumed a 1-day missing period, and Backts = 168, which
assumed a 7-day missing period, respectively. In Figure 9, Case 2, Case 3, and Case 4, which
used the discharge data of both Shioyabashi and Sanpukuji as input data, were relatively
good. Case 2 and Case 3 indicate 0.939 and 0.947 in the median of P5 of NSE, respectively.
They are over the reference accuracy 0.903, which is the accuracy of the linear regression
model. Case 4, which used air temperature as one of the input data factors, indicates
0.900 in the median of P5 of NSE, which was slightly less than the reference accuracy. The
lower quartiles for Case 2 and Case 3 were 0.922 and 0.917, respectively, which were better
than the reference accuracy. However, the minimum for Case 2 and Case 3 were 0.896 and
0.860, respectively, which were slightly less than the reference accuracy. It must be noted
that Case 3, which used precipitation as one of the input data factors, has a wide variation
in accuracy depending on different hyperparameter settings. In Figure 10, Case 2, Case 3,
and Case 4 have relatively good accuracy, as is seen in Figure 9. Case 2 indicates 0.922 in the
median of P5 of NSE, which is over the reference accuracy. However, the median of Case
3 and Case 4 are 0.899 and 0.871, respectively, which are less than the reference accuracy.
The minimum for Case 2 is 0.904, which is over the reference accuracy. Thus, Case 2 is
appropriate for the input data when Backts = 168.

The results of the cases without the discharge data of Shioyabashi as Backts = 0 are
shown in Figure 11. Case 9, Case 10, and Case 11, which used discharge data of Sanpukuji
as the input data, indicated relatively good accuracies. However, they were 0.877–0.891 in
the median of P5 of NSE, which was slightly less than the reference accuracy. In Case 7,
where only precipitation was used as the input data, the median of the P5 of NSE is 0.344.
In Case 8, where only air temperature was used as the input data, the median of the P5 of
NSE is 0.013, indicating that it is difficult to estimate the missing data. These results suggest
the understanding for the input data combination is: (i) both the Sanpukuji data and the
Shioyabashi data are necessary; (ii) air temperature is not required; and (iii) precipitation
may contribute to the improvement of accuracy, but it should be noted that it may cause
poor accuracy depending on the parameter settings.
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Two trainings of Case 1 (Backts = 24, Hid = 20, Drp = 0, Drpr = 0) and Case 8 (Backts = 24,
Hid = 20, Drp = 0, Drpr = 0) were chosen to investigate the impact of precipitation to
the estimation results. The hydrograph of observed discharge, precipitation, and both
estimation results are shown in Figure 12. The blue line is observed data, and the grey line
is precipitation. The green and orange lines represent discharge estimated from data with
precipitation and without precipitation, respectively. The hydrograph indicates that both
estimation results are responsive to precipitation events. When precipitation data was used
for training, there is a trend of an occurrence of trough in the estimated discharge after a
peak caused by precipitation. Additionally, the model could not estimate the discharge
well when a relatively heavy precipitation event occurs. These are considered as part of the
reasons that precipitation may cause lower accuracy.
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3.4. Dropout and Recurrent Dropout

Figure 13 shows the influence of dropout and recurrent dropout (Drp&Drpr), when
Hid = 20 to 200 and Backts = 24 for Case 3. The accuracy improved as Drp&Drpr became
smaller, and Drp&Drpr = 0.00 had the best accuracy of 0.917 in the lower quartile P5 of the
NSE. The maximum P5 of the NSE was 0.961 when Drp&Drpr = 0.01 and Hid = 200. When
Hid = 20, the minimums were indicated as 0.860, 0.860, 0.825, and 0.771 for Drp&Drpr = 0.00,
0.01, 0.05, and 0.10, respectively. When Drp&Drpr = 0.00 or 0.01, in the case of Hid > 50, the
accuracies were indicated to be more than 0.920, which is over the reference accuracy. In
brief, Drp&Drpr = 0.00 shows the best results. The reason may be that higher Drp and Drpr
values drop more units for the linear transformation of the input and recurrent state. Fewer
units caused a shortage of information necessary for the training, since the LSTM model of
this study has only a few units in the input and hidden layers. In the case of some other
studies, a large number of units in the input and hidden layers caused drops in the units by
dropout and recurrent dropout, which improved the training results [32,33]. Thus, if Hid is
less than 200, Drp&Drpr = 0.00 is appropriate, and if Hid is more than 200, Drp&Drpr = 0.01
is appropriate.
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3.5. Number of Hidden Layers

Figure 14 shows the relationship between the number of hidden layers (Hid = 20
to 200) and the P5 of NSE, when Backts = 24 and Drp&Drpr = 0.00. In Cases 2, 3, and 4,
the accuracy improved as Hid increased. Case 2 and 3 indicated better accuracy than the
reference accuracy 0.903 when Hid > 50. However, when Hid > 100, the accuracies were
almost the same, i.e., 0.947–0.947 for Case 2, 0.957–0.959 for Case 3. Additionally, Figure 15
shows the relationship between the number of hidden layers (Hid = 20 to 200) and the
P5 of the NSE when Backts = 168 and Drp&Drpr = 0.00. In Case 2, the accuracy slightly
improved from 0.904 to 0.928 as Hid increased. In Case 4, the accuracy had almost no
change as Hid increased. On the other hand, in Case 3, Hid = 50 indicated the best accuracy
of 0.915. However, the accuracy decreased as Hid increased when Hid > 50. In Case 3, with
precipitation as the input, the estimated hydrograph might be jagged due to the influence
of precipitation, showing pulsed time-series data. This is the reason why Case 3 does not
always show the best accuracy. As a result, for Backts = 24, Hid = 100 is appropriate for
both Cases 2 and 3 because the accuracies for Hid = 100 and 200 were almost same. Setting
a higher Hid value will just lead to a longer training time consumption. Moreover, for
Backts = 168, Hid = 100 is also appropriate for Case 2, and Hid = 50 is appropriate for Case
3. However, in Case 3, where precipitation is used as the input data, care should be taken
because the accuracy may decrease depending on the settings.
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4. Conclusions

In this study, LSTM was applied for the imputation of missing discharge data of the
Daihachiga River. The performance of an LSTM model was evaluated, and the hyper-
parameters of the model were tuned to satisfy the reference accuracy of 0.903 in NSE.
Different hyperparameters affect the model performance to different extents. In the case of
the Daihachiga River, the discharge data of both observation points should be included in
input variables for training (Case 2). It is thought that the discharge data of Shioyabashi
dating back 1 day or 7 days is effective in correcting the absolute value of the estimated
discharge, because the estimated hydrograph with Case 9 had a slight error in base flow
volume. The influence of precipitation varies. Since precipitation is strongly related to
discharge, it may be useful to complete missing data. However, there is a possibility of
making the estimated hydrograph jagged due to the influence of precipitation, showing
pulsed time-series data. Although it is possible that filtering the precipitation data before
inputting it into the LSTM will improve the accuracy, it is safer to exclude precipitation
data in order to obtain consistently good results. Moreover, air temperature data could
not improve the performance. Due to the small number of units for transformation in the
model of this study, setting the dropout value to 0 was suitable. A higher Hid value might
be more suitable for the model. However, an excessive Hid value would just lead to a longer
training time.

Consequently, this study can propose the hyperparameter settings as In = Case 2,
Hid = 100, Drp&Drpr = 0, a setting with which it is possible to estimate with greater
accuracy than the reference. The necessity of hyperparameter tuning was proved, and
the hyperparameter settings could be a reference for further research in relevant areas.
Of course, this combination can be appropriately adjusted under specific experimental
conditions. In future experiments, the amount of analysis data can be increased, such as
the discharge data of more than two observation points, and the influence of precipitation
and air temperature on the model performance can be further analyzed to improve the
accuracy of the results.
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.3390/w14020213/s1, Table S1: 90 kinds of hyperparameter combination.
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