(本网站及其内含博文均有三种语言版本,可在菜单栏地球图标处进行选择)
(This website and all the blog contents in it are available in three language versions, which can be selected from the globe icon on the menu bar)
(このウェブサイト及びその中のすべてのブログコンテンツは3つの言語バージョンがあり、メニューバーの地球アイコンから選択できます。)
こんにちは!ここはウェイリスの個人ウェブサイトです。最近、このようなウェブサイトを作ることはとても面白いと感じ、だからこそ、今見ているこれらのコンテンツが生まれました。ここでは、私が面白いと思った考え方や出来事を共有するつもりです。
現在、私は岐阜大学で研究員と助教をしています。主な研究分野はリモートセンシング、地理情報システム、水文学、そして深層学習です。興味があれば、左側のORCIDまたはResearchGateのアイコンをクリックして、学術情報についての詳細をご覧ください。
趣味として、私は写真撮影とビデオ編集が好きです。左側のアイコンから私のBilibiliページやWeChat公式アカウントにアクセスしてみてください。また、Pythonで面白いプログラムを書くことも試みています(まだ初心者ですが)。何か良いアイデアがあれば、ぜひ私と共有してください。
博士(工学), 2022
岐阜大学
修士(応用生物科学), 2015
岐阜大学
学士(地理科学), 2012
内モンゴル師範大学
Missing observational data pose an unavoidable problem in the hydrological field. Deep learning technology has recently been developing rapidly, and has started to be applied in the hydrological field. Being one of the network architectures used in deep learning, Long Short-Term Memory (LSTM) has been applied largely in related research, such as flood forecasting and discharge prediction, and the performance of an LSTM model has been compared with other deep learning models. Although the tuning of hyperparameters, which influences the performance of an LSTM model, is necessary, no sufficient knowledge has been obtained. In this study, we tuned the hyperparameters of an LSTM model to investigate the influence on the model performance, and tried to obtain a more suitable hyperparameter combination for the imputation of missing discharge data of the Daihachiga River. A traditional method, linear regression with an accuracy of 0.903 in Nash–Sutcliffe Efficiency (NSE), was chosen as the comparison target of the accuracy. The results of most of the trainings that used the discharge data of both neighboring and estimation points had better accuracy than the regression. Imputation of 7 days of the missing period had a minimum value of 0.904 in NSE, and 1 day of the missing period had a lower quartile of 0.922 in NSE. Dropout value indicated a negative correlation with the accuracy. Setting dropout as 0 had the best accuracy, 0.917 in the lower quartile of NSE. When the missing period was 1 day and the number of hidden layers were more than 100, all the compared results had an accuracy of 0.907–0.959 in NSE. Consequently, the case, which used discharge data with backtracked time considering the missing period of 1 day and 7 days and discharge data of adjacent points as input data, indicated better accuracy than other input data combinations. Moreover, the following information is obtained for this LSTM model: 100 hidden layers are better, and dropout and recurrent dropout levels equaling 0 are also better. The obtained optimal combination of hyperparameters exceeded the accuracy of the traditional method of regression analysis.